Wave-making resistance estimation through deep learning considering the distribution of ship figure

Abstract

A method for the estimation of wave-making resistance from the hull form and Froude number through deep learning is proposed. At the same time, this research also gives a solution when the data are skewed, which solves the problem of low generalization performance. The reduction of wave-making resistance is an essential issue in hull form design. However, the estimation of wave-making resistance is a time-consuming task that depends on experimental measurements. To enable direct estimation of the wave resistance from hull form, deep learning, which enables end-to-end learning, is an effective approach. The proposed method has two phases. First, auto-encoders, which reduce the dimension of the offset and the profile data, are generated, while performing to the skewed offset data, use an improved sampling method. Subsequently, after the regularization of these data, a deep neural net for regression estimation of wave-making resistance is generated. The results of evaluation experiments show that the proposed method can estimate wave-making resistance with high precision.

Publication
IEEJ Transactions on Electronics, Information and Systems, 140(3)

Click the Cite button above to copy or download the publication metadata.

Xin Li
Xin Li
Lecturer

Research in areas such as machine learning, deep learning, and artificial intelligence applications, specialize in priority sampling and learning algorithm for non-uniform data and offset data.Learn more

comments powered by Disqus
Previous

Related